

06/02/2025

2024 Consumer Confidence Report for Public Water System CITY OF HEATH

This is your water quality report for January 1 to December 31, 2024

For more information regarding this report contact:

CITY OF HEATH provides Purchased Surface Water from CITY OF ROCKWALL, CITY OF ROCKWALL provides purchased surface water from NTMWD, Lake Lavon located in COLLIN COUNTY

Name Bryan Creed

Phone 972-961-4870

Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono (972) 771-6228.

Definitions and Abbreviations

Definitions and Abbreviations The following tables contain scientific terms and measures, some of which may require explanation.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our

water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred

and/or why total coliform bacteria have been found in our water system on multiple occasions.

Maximum Contaminant Level or MCL:

The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial

contaminants.

Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to

control microbial contaminants.

MFL million fibers per liter (a measure of asbestos)

mrem: millirems per year (a measure of radiation absorbed by the body)

na: not applicable.

NTU nephelometric turbidity units (a measure of turbidity)

pCi/L picocuries per liter (a measure of radioactivity)

Definitions and Abbreviations

ppb: micrograms per liter or parts per billion

ppm: milligrams per liter or parts per million

ppq parts per quadrillion, or picograms per liter (pg/L)
ppt parts per trillion, or nanograms per liter (ng/L)

Treatment Technique or TT: A required process intended to reduce the level of contaminants in drinking water.

Information about your Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least some small amounts of contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can naturally occur or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

To ensure that tap water is safe to drink, EPA prescribes regulations which limit the number of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; people who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Information about Source Water

CITY OF HEATH purchases water from CITY OF ROCKWALL. CITY OF ROCKWALL provides purchased surface water from CITY OF ROCKWALL provides purchased surface water from NTMWD, Lake Lavon located in COLLIN COUNTY.

TCEQ completed a Source Water Susceptibility for all drinking water systems that own their sources. This report describes the susceptibility and types of constituents that may encounter the drinking water source based on human activities and natural conditions. The system(s) from which we purchase our water received the assessment report. For more information on source water assessments and protection efforts on our system contact Bryan Creed at (972)-961-4870.

Coliform Bacteria

Maximum Contaminant Level Goal	Total Coliform Maximum Contaminant Level	Highest No. of Positive		Total No. of Positive E. Coli or Fecal Coliform Samples		Likely Source of Contamination
0	1 positive monthly sample.	5	0	0	Ν	Naturally present in the environment.

Regulated Contaminants

Disinfection By- Products	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Total Haloacetic Acids (HAA5)	2024	23	14 - 30.8	No goal for the total	60	ppb	N	By-product of drinking water disinfection.

^{*}The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year

Total Trihalomethanes (TTHM)	2024	39	26.4 - 47.4	No goal for the total	80	ppb	N	By-product of drinking water disinfection.
Bromate	2024	Levels lower than detect level	0 - 0	5	10	ppb	N	By-product of drinking water ozonation.
Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels	MCLG	MCL	Units	Violation	Likely Source of Contamination
Antimony	2024	Levels lower	0 - 0	6	6	ppb	No	Discharge from petroleum refineries; fire

Arsenic	2024	Levels lower than detect level	0 - 0	0	10	ppb	No	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes.
Barium	2024	0.06	0.04 - 0.06	2	2	ppm	No	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.
Beryllium	2024	Levels lower than detect level	0 - 0	4	4	ppb	No	Discharge from metal refineries and coal- burning factories; discharge from electrical, aerospace, and defense industries.
Cadmium	2024	Levels lower than detect level	0 - 0	5	5	ppb	No	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints.
Chromium	2024	1.3	1.3 - 1.3	100	100	ppb	No	Discharge from steel and pulp mills; erosion of natural deposits.
Cyanide	2024	128	28.5 - 128	0 - 0	200	ppb	No	Discharge from steel/metal factories; Discharge from plastics and fertilizer
Fluoride	2024	0.712	0.316 - 0.712	4	4	ppm	No	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum
Mercury	2024	Levels lower than detect level	0 - 0	2	2	ppb	No	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland.
Nitrate (measured as Nitrogen)	2024	0.926	0.0592 - 0.926	10	10	ppm	No	Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits.
Selenium	2024	Levels lower than detect level	0 - 0	50	50	ppb	No	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines.
Thallium	2024	Levels lower than detect level	0 - 0	0.5	2	ppb	No	Discharge from electronics, glass, and leaching from ore-processing sites; drug factories.

Nitrate Advisory: Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six (6) months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask advice from your health care provider.

Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Beta/photon emitters	2024	5.3	5.3 - 5.3	0	50	pCi/L	No	Decay of natural and man-made deposits.
Gross alpha excluding radon and uranium	2024	Levels lower than detect level	0 - 0	0	15	pCi/L	No	Erosion of natural deposits.
Radium	2024	Levels lower than detect level	0 - 0	0	5	pCi/L	No	Erosion of natural deposits.
Synthetic organic contaminants including pesticides and	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
2, 4, 5 - TP (Silvex)	2022	Levels lower than detect level	0 - 0	50	50	ppb	No	Residue of banned herbicide.
2, 4 - D	2022	Levels lower than detect level	0 - 0	70	70	ppb	No	Runoff from herbicide used on row crops.
Alachlor	2024	Levels lower than detect level	0 - 0	0	2	ppb	No	Runoff from herbicide used on row crops.
Aldicarb	2022	Levels lower than detect level	0 - 0	1	3	ppb	No	Runoff from agricultural pesticide.
Aldicarb Sulfone	2022	Levels lower than detect level	0 - 0	1	2	ppb	No	Runoff from agricultural pesticide.
Aldicarb Sulfoxide	2022	Levels lower than detect level	0 - 0	1	4	ppb	No	Runoff from agricultural pesticide.
Atrazine	2024	0.1	0.1 - 0.1	3	3	ppb	No	Runoff from herbicide used on row
Benzo (a) pyrene	2024	Levels lower than detect level	0 - 0	0	200	ppt	No	Leaching from linings of water storage tanks and distribution lines.
Carbofuran	2022	Levels lower than detect level	0 - 0	40	40	ppb	No	Leaching of soil fumigant used on rice and alfalfa.

2022

Levels lower than

detect level

0 - 0

0

2

ppb

No

7

Residue of banned termiticide.

Chlordane

Dalapon	2022	Levels lower than detect level	0 - 0	200	200	ppb	No	Runoff from herbicide used on rights of way.
Di (2-ethylhexyl) adipate	2024	Levels lower than detect level	0 - 0	400	400	ppb	No	Discharge from chemical factories.
		<u> </u>	T		T			
Di (2-ethylhexyl) phthalate	2024	Levels lower than detect level	0 - 0	0	6	ppb	No	Discharge from rubber and chemical factories.
Dibromochloropropa ne (DBCP)	2022	Levels lower than detect level	0 - 0	0	200	ppt	No	Runoff / leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards.
Dinoseb	2022	Levels lower than detect level	0 - 0	7	7	ppb	No	Runoff from herbicide used on soybeans and vegetables.
Endrin	2024	Levels lower than detect level	0 - 0	2	2	ppb	No	Residue of banned insecticide.
Ethylene dibromide	2022	Levels lower than detect level	0 - 0	0	50	ppt	No	Discharge from petroleum refineries.
Heptachlor	2024	Levels lower than detect level	0 - 0	0	400	ppt	No	Residue of banned termiticide.
Heptachlor epoxide	2024	Levels lower than detect level	0 - 0	0	200	ppt	No	Breakdown of heptachlor.
Hexachlorobenzene	2024	Levels lower than detect level	0 - 0	0	1	ppb	No	Discharge from metal refineries and agricultural chemical factories.
Hexachlorocyclopent adiene	2024	Levels lower than detect level	0 - 0	50	50	ppb	No	Discharge from chemical factories.
Lindane	2024	Levels lower than detect level	0 - 0	200	200	ppt	No	Runoff / leaching from insecticide used on cattle, lumber, and gardens.
Methoxychlor	2024	Levels lower than detect level	0 - 0	40	40	ppb	No	Runoff / leaching from insecticide used on fruits, vegetables, alfalfa, and
Oxamyl [Vydate]	2022	Levels lower than detect level	0 - 0	200	200	ppb	No	Runoff / leaching from insecticide used on apples, potatoes, and
Pentachlorophenol	2022	Levels lower than detect level	0 - 0	0	1	ppb	No	Discharge from wood preserving factories.
Picloram	2022	Levels lower than detect level	0 - 0	500	500	ppb	No	Herbicide runoff.
Simazine	2024	0.071	0.071 - 0.071	4	4	ppb	No	Herbicide runoff.

Toxaphene	2024	Levels lower than	0 - 0	0	3	ppb	No	Runoff / leaching from insecticide
		detect level						used on cotton and cattle.

Volatile Organic Contaminants	Collectio n Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
1, 1, 1 - Trichloroethane	2024	Levels lower than detect level	0 - 0	200	200	ppb	No	Discharge from metal degreasing sites and other factories.
1, 1, 2 - Trichloroethane	2024	Levels lower than detect level	0 - 0	3	5	ppb	No	Discharge from industrial chemical factories.
1, 1 - Dichloroethylene	2024	Levels lower than detect level	0 - 0	7	7	ppb	No	Discharge from industrial chemical factories.
1, 2, 4 - Trichlorobenzene	2024	Levels lower than detect level	0 - 0	70	70	ppb	No	Discharge from textile-finishing factories.
1, 2 - Dichloroethane	2024	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from industrial chemical factories.
1, 2 - Dichloropropane	2024	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from industrial chemical factories.
Benzene	2024	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories; leaching from gas storage tanks and landfills.
Carbon Tetrachloride	2024	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from chemical plants and other industrial activities.

06/02/2025

Volatile Organic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chlorobenzene	2024	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from chemical and agricultural chemical factories.
Dichloromethane	2024	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from pharmaceutical and chemical factories.
Ethylbenzene	2024	Levels lower than detect level	0 - 0	0	700	ppb	No	Discharge from petroleum refineries.
Styrene	2024	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from rubber and plastic factories; leaching from landfills.
Tetrachloroethylene	2024	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories and dry cleaners.
Toluene	2024	Levels lower than detect level	0 - 0	1	1	ppm	No	Discharge from petroleum factories.
Trichloroethylene	2024	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from metal degreasing sites and other factories.
Vinyl Chloride	2024	Levels lower than detect level	0 - 0	0	2	ppb	No	Leaching from PVC piping; discharge from plastics factories.
Xylenes	2024	Levels lower than detect level	0 - 0	10	10	ppm	No	Discharge from petroleum factories; discharge from chemical factories.
cis - 1, 2 - Dichloroethylene	2024	Levels lower than detect level	0 - 0	70	70	ppb	No	Discharge from industrial chemical factories.
o - Dichlorobenzene	2024	Levels lower than detect level	0 - 0	600	600	ppb	No	Discharge from industrial chemical factories.
p - Dichlorobenzene	2024	Levels lower than detect level	0 - 0	75	75	ppb	No	Discharge from industrial chemical factories.
trans - 1, 2 - Dicholoroethylene	2024	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from industrial chemical factories.

06/02/2025

Turbidity

	Limit (Treatment Technique)	Level Detected	Violation	Likely source of Contamination
Highest Single Measurement	1 NTU	0.93	No	Soil runoff.
Lowest Monthly Percentage (%) meeting limit	0.3 NTU	96.7%	No	Soil runoff.

Note: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration.

Maximum Residual Disinfectant Level

Disinfectant Type	Year	Average Level of Quarterly Data	Lowest Result of Single Sample	Highest Result of Single Sample	MRDL	MRDLG	Units	Source of Chemical
Chlorine Residual (Chloramines)	2024	1.68	0.5	3.8	4.00	<4.0	ppm	Disinfectant used to control microbes.
Chlorine Dioxide	2024	0.027	0	0.82	0.80	0.80	ppm	Disinfectant.
Chlorite	2024	0.187	0	0.95	1.00	N/A	ppm	Disinfectant.

Note: Water providers are required to maintain a minimum chlorine disinfection residual level of 0.5 parts per million (ppm) for systems disinfecting with chloramines and an annual average chlorine disinfection level of between 0.5 ppm and 4 ppm.

Total Organic Carbon

The percentage of Total Organic Carbon (TOC) removal was measured each month, and the system met all TOC removal requirements set.

Cryptosporidium and Giardia

Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Cryptosporidium	2024	Levels lower than detect level	0 - 0	(Oo) Cysts/L	Human and animal fecal waste. Naturally present in the environment.
Giardia	2024	Levels lower than detect level	0 - 0	(Oo) Cysts/L	Human and animal fecal waste. Naturally present in the environment.

Note: Levels detected are for source water, not for drinking water. No cryptosporidium or giardia were found in drinking water.

Lead and Copper

Lead and Copper	Date Sampled	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Lead		15	0.00179	0	ppb		Corrosion of household plumbing systems; erosion of natural deposits.
Copper		1.30	0.848	1	ppm		Erosion of natural deposits; leaching from wood preservatives; corrosion of household plumbing systems.

Lead and Copper Rule: The Lead and Copper Rule protects Public Health by minimizing lead and copper levels in drinking water, primarily by reducing water corrosivity. Lead and Copper enter drinking water mainly from corrosion of plumbing materials containing lead and copper.

ADDITIONAL HEALTH INFORMATION FOR LEAD: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. City of Heath is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline, or at http://www.epa.gov/safewater/lead

Unregulated Contaminants

Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Chloroform	2024	18.3	7.61 -18.3	ppb	By-product of drinking water disinfection.
Bromoform	2024	5.26	1.36 – 5.26	ppb	By-product of drinking water disinfection.
Bromodichloromethane	2024	16.9	3.0 – 16.9	ppb	By-product of drinking water disinfection.
Dibromochloromethane	2024	14.0	8.53 -14.0	ppb	By-product of drinking water disinfection.

NOTE: Bromoform, chloroform, bromodichloromethane, and dibromochloromethane are disinfection by-products. There is no maximum contaminant level for these chemicals at the entry point to distribution. These contaminants are included in the Disinfection By-Products TTHM compliance data.

Secondary and Other Constituents Not Regulated

Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Aluminum	2024	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits.
Calcium	2024	66.5	35.4 - 66.5	ppm	Abundant naturally occurring element.
Chloride	2024	95.3	15.4 - 95.3	ppm	Abundant naturally occurring element; used in water purification; by-product of oil field activity.
Iron	2024	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits; iron or steel water delivery equipment or facilities.
Magnesium	2024	9.84	5.88 - 9.84	ppm	Abundant naturally occurring element.
Manganese	2024	0.082	0.029 - 0.082	ppm	Abundant naturally occurring element.
Nickel	2024	0.0067	0.0048 - 0.0067	ppm	Erosion of natural deposits.
рН	2024	8.9	7.4 - 8.9	units	Measure of corrosivity of water.
Silver	2024	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits.

Sodium	2024	88.7	35.5 - 88.7	ppm	Erosion of natural deposits; by-product of oil field activity.
Sulfate	2024	165	39.6 - 165	ppm	Naturally occurring; common industrial by-product; by-product of oil field activity.
Total Alkalinity as CaCO3	2024	128	56.5 - 128	ppm	Naturally occurring soluble mineral salts.
Total Dissolved Solids	2024	509	271 - 509	ppm	Total dissolved mineral constituents in water.
Total Hardness as CaCO3	2024	202	105 - 202	ppm	Naturally occurring calcium.
Zinc	2024	Levels lower than detect level	0 - 0	ppm	Moderately abundant naturally occurring elements used in the metal industry.

VIOLATIONS

Revised Total Coliform Rule (RTCR)

The Revised Total Coliform Rule (RTCR) seeks to prevent waterborne diseases cause by E. Coli. E. Coli are bacteria whose presence indicates that the water may be contaminated with human or animal waste. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, the elderly, and those with weakened immune systems.

Violation Type	Violation Begin	Violation End	Violation Explanation
MONITORING, ROUTINE, MINOR (RTCR)	11/01/2024	11/30/2024	We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated.

Unregulated Contaminant Monitoring Rule (UCMR5)

Unregulated Contaminant	Collection Date	Average Level	Range of Levels Detected	Health-Based Reference Concentration	Likely Source of Contamination
PFBS	2023	0.0034	0.0034-0.0035		This data is part of UCMR5 results in relation to minimum reporting levels and available non-regulatory health-based reference concentrations
PFHxA	2023	0.0049	0.0045-0.0055		This data is part of UCMR5 results in relation to minimum reporting levels and available non-regulatory health-based reference concentrations
PFPeA	2023	0.0055	0.0047-0.0059		This data is part of UCMR5 results in relation to minimum reporting levels and available non-regulatory health-based reference concentrations.
6:2 FTS	2023	0.0074	0.0059-0.0088		This data is part of UCMR5 results in relation to minimum reporting levels and available non-regulatory health-based reference concentrations.

PWSs are required to report UCMR results in the CCR when unregulated contaminants are found (i.e., measured at or above minimum reporting levels (MRLs), and must report the average and range of the monitoring results for the report year. Additionally, PWSs are required to notify customers through Tier 3 Public Notification (PN) about the availability of all UCMR results no later than 12 months after they are known by the PWS. If timing and delivery requirements are met, systems may include their PN within the CCR, also known as the annual drinking water quality report. EPA has resources for PWSs available on the CCR and PN Compliance help webpages.

Lead Service Line Inventory

North Texas Municipal Water District has completed its service line inventory and determined through field investigations that no lead, galvanized requiring replacement, or lead status unknown service lines are in the system. To view and access the service line inventory, go to https://ntmwd.com/20/Water-Quality

06/02/2025 - TX1990014_2024_2025-06-02_09-00-43.DOC